
AD-A252 455

WRDC-TR-90-8007
Volume V
Part 28

INTEGRATED INFORMATION SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 28 - Data Aggregators Development Specification

M. Apicella, S. Singh

Control Data Corporation
Integration Technology Services
2970 Presidential Drive
Fairborn, OH 45324-6209 DT C

-JUN0 3. 1992

September 1990 L)N 3 92

Final Report for Period 1 April 1987 - 31 December 1990

Approved for Public Release; Distribution is Unlimited

92-14469

MANUFACTURING TECHNOLOGY DIRECTORATE
WRIGHT RESEARCH AND DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6533

NOTICE

When Government drawings, specifications, or other data are used for any purpose other
than in connection with a definitely related Government procurement operation, the United
States Government thereby incurs no responsibility nor any obligation whatsoever, regardless
whether or not the government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data. It should not, therefore, be construed or implied
by any person, persons, or organization that the Government is licensing or conveying any
rights or permission to manufacture, use, or market any patented invention that may in any way
be related thereto.

This technical report has been reviewed and is approved for publication.
This report is releasable to the National Technical
information Service (NTIS). At NTIS, it ill be
available to the general public, including foreign nations

DA D L. J S N, Pr ect Manager DATE

Wri ht-Pat rs AFB, OH 45433-6533

FOR THE COMMANDER:

8RUCE A. RASMUSSEN, Chief DATE 5K J
WRDC/MTI
Wright-Patterson AFB, OH 45433-6533

If your address has changed, if you wish to be removed form our mailing list, or if the
addressee is no longer employed by your organization please notify WRDC/MTI, Wright-
Patterson Air Force Base, OH 45433-6533 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release,
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution is Unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
DS 620341320 WRDC-TR- 90-8007 Vol. V, Part 28

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Control Data Corporation; (if applicable) WRDC/MTI
Integration Technology Services

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
2970 Presidential Drive
Fairborn, OH 45324-6209 WPAFB, OH 45433-6533

8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUM.
ORGANIZATION (if applicable)

Wright Research and Development Center, F33600-87-C-0464
Air Force Systems Command, USAF WRDC/MTI

10. SOURCE OF FUNDING NOS.
Sc. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB, Ohio 45433-6533 PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. 0 NO.

11 TITLE (Include Security Classification) 78011F 595600 F95600 20950607
See block 19 on

12. PERSONAL AUTHOR(S)
Control Data Corporation: Apicella, M. L., Singh, S.

13a. TYPE OF REPORT 113b. TIME COVERED 114. DATE OF REPORT (Yr.,Mo.,Day) 15. PAGE COUNT
Final Report 4/1/87 -12/30/90 1990 September 30 A7

16. SUPPLEMENTARY NOTATION

WRDC/MTI Project Priority 6203

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify block no.)

FIELD GROUP SUB GR.

19. ABSTRACT (Continue on reverse if necessary and identify block number)

This Development Specification (DS) describes the functions, performance, environment, interfaces, test, qualification, and
design requirements for the Data Aggregator computer programs. These programs combine the various sub results from
distributed data requests within the Common Data Model subsystem. These programs use the operators JOIN, UNION, and
DIFFERENCE.

BLOCK 11:

INTEGRATED INFORMATION SUPPORT SYSTEM

Vol V - Common Data Model Subsystem

Part 28 - Data Aggregators Development Speci-

fication

20. DISTRIBUTION/AVAILABILITY Ut- s.,,........ .RACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED x SAME AS RPT. DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NO. 22c. OFFICE SYMBOL
(Include Area Code)

David L. Judson (513) 255-7371 WRDC/MTI

EDITION OF 1 JAN 73 IS OBSOLETE
DD FORM 1473, 83 APR Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

DS 620341320
30 September 1990

This technical report covers work performed under Air Force
Contract F33600-87-C-0464, DAPro Project. This contract is
sponsored by the Manufacturing Technology Directorate, Air Force
Systems Command, Wright-Patterson Air Force Base, Ohio. It was
administered under the technical direction of Mr. Bruce A.
Rasmussen, Branch Chief, Integration Technology Division,
Manufacturing Technology Directorate, through Mr. David L. Judson,
Project Manager. The Prime Contractor was Integration Technology
Services, Software Programs Division, of the Control Data
Corporation, Dayton, Ohio, under the direction of Mr. W. A.
Osborne. The DAPro Project Manager for Control Data Corporation
was Mr. Jimmy P. Maxwell.

The DAPro project was created to continue the development, test,
and demonstration of the Integrated Information Support System
(IISS) . The IISS technology work comprises enhancements to IISS
software and the establishment and operation of IISS test bed
hardware and communications for developers and users.

The following list names the Control Data Corporation
subcontractors and their contributing activities:

SUBCONTRACTOR ROLE

Control Data Corporation Responsible for the overall Common
Data Model design development and
implementation, IISS integration and
test, and technology transfer of IISS.

D. Appleton Company Responsible for providing software
information services for the Common
Data Model and IDEFlX integration
methodology.

ONTEK Responsible for defining and testing a
representative integrated system base
in Artificial Intelligence techniques
to establish fitness for use.

Simpact Corporation Responsible for Communication
development.

Structural Dynamics Responsible for User Interfaces,
Research Corporation Virtual Terminal Interface,and Network

Transaction Manager design,
development, implementation, and
support.

Arizona State University Responsible for test bed operations
and support.

iii

DS 620341320
30 September 1990

TABLE OF CONTENTS

Page

SECTION 1.0 SCOPE 1-1
1.1 Identification 1-1
1.2 Functional Summary 1-3

SECTION 2.0 DOCUMENTS 2-1
2.1 Applicable Documents 2-1
2.2 Terms and Abbreviations 2-2

SECTION 3.0 REQUIREMENTS 3-1
3.1 Computer Program Definition 3-1
3.1.1 System Capacities 3-1
3.1.2 Interface Requirements 3-1
3.2 Detailed Functional Requirements 3-1
3.2.1 Function AGGI: Aggregator Inputs .. 3-1
3.2.2 Function AGG2: Perform Union 3-3
3.2.3 Function AGG3: Perform Join 3-5
3.2.4 Function AGG4: Perform Outer Join . 3-17
3.2.5 Function AGG5: Perform NOT-IN-SET

Selection 3-25
3.3 Special Requirements 3-32
3.4 Human Performance 3-32
3.5 Database Requirements 3-32
3.6 Adaptation Requirements 3-33

SECTION 4.0 QUALITY ASSURANCE PROVISIONS 4-1

SECTION 5.0 PREPARATION FOR DELIVERY 5-1

iv

DS 620341320
30 September 1990

LIST OF ILLUSTRATIONS

Figure Title Page

1-1 AO of the CDMP Configuration Items 1-2

Aooession For

NTIS ~P'&I

Justif teatio

ByD1 ii- ribtlon/

r Avj ilP b112I iity Codes!Avriil and/or

Dist Special

v

DS 620341320
30 September 1990

SECTION 1

SCOPE

1.1 Identification

This specification establishes the performance, develop-
ment, test and qualification requirements of a collection of
computer programs identified as Configuration Item (CI)
"Aggregator".

This CI constitutes one of the major subsystems of the
"Common Data Model Processor" (CDMP) which is described in the
System Design Specification (SDS) for the ICAM Integrated
Support System (IISS). The CDMP scope is based on a logical
concept of subsystem modules that interface with other external
systems of the IISS. The CDMP has been decomposed into three
configuration items: the Precompiler, the Distributed Request
Supervisor (DRS), and the Aggregator. The scope of the CDMP and
its configuration items is described in Figure 1-1 and the
following narrative.

Common Data Model Processor (CDMP)

Input to the CDMP consists of user transactions in the form
of neutral data manipulation language (NDML) commands embedded
in COBOL or FORTRAN host programs. NDML commands phrased as
stand-alone requests may be supported in future enhancements.

The Precompiler CI parses the application program source
code, identifying NDML commands. It applies external-schema-
to-conceptual-schema and conceptual-schema-to-internal-schema
transforms on the NDML command, thereby decomposing the NDML
command into internal schema single database requests. These
single database requests are each transformed into generic DML
commands. Programs are generated from the generic DML commands
which can access the specific databases to retrieve the data
required to evaluate the NDML command. These programs, referred
to as Request Processors (RP), are stored at the appropriate
host machines. The NDML commands in the application source
program are replaced by function calls which, when executed,
will activate the run-time request evaluation processes
associated with the particular NDML command.

1-1

DS 620341320
30 September 1990

A 0 - - CS/ES TRANSFORMER

PU PERFORM ------------ ---- 4--------- ----------------------------
L R TRANSFORMATIONS IQUERY GRAMH NTERMEDIATE
I C ADGENERATE I------------- RELATION VOWNES
C z CODE Al --------------- + a j
A ------- QUERY PROCESSOR V
TC +---------

D 1
MANAG ER USER RESPONSE

MESSAGE PROCESSING --------2 MESSAGES 4------------

AGGREGATE -
Al-PRECOMPILER I EPNES
A2-DISTRIBUTED REQUEST j4A3 1-

SUPERVISOR 4
A3-AGGREGATOR --------------------------- eeeee-

CS AGGREGATED RESPONSE

Figure 1-1. AO of the CDMP Configuration Items

The Precompiler also generates a CS/ES Transformer program
which will take the final results of the request, stored in a
file as a table with external schema structure, and convert the
data values into their external schema form.

Finally, the Precompiler generates a Join Request Graph and
Result Field Table, which are used by the Distributed Request
Supervisor (DRS) during the run-time evaluation of the request.

The DRS CI is responsible for coordination of the run-time
activity associated with the evaluation of an NDML command. It
is activated by the application program, which sends it the
names and locations of the RPs to activate, along with run-time
parameters which are to be sent to the RPs. The DRS activates
the RPs, sending them the run-time parameters. The results of
the RPs are stored as files, in the form of conceptual schema
relations, on the host which executed the RP. Using the Join
Request transmission cost information and data about
intermediate results, the DRS determines the optimal strategy
for combining the intermediate results of the NDML command. It
issues the appropriate file transfer requests, activates
aggregators to perform join, outer join, union, and not-in-set
operations, and activates the appropriate CS/ES Transformer
program to transform the final results. Finally, the DRS
notifies the application program that the request is completed,
and sends it the name of the file which contains the results of
the request.

The Aggregator CI is activated by the DRS or by a
subroutine call from a user application program. An instance of

1-2

DS 620341320
30 September 1990

the Agqregator is executed for each join, union, not-in-set, or
outer join performed. It is passed information describing the
operation to be performed and the file names containing the
operands of the operation. The DRS or user's application
program ensures that these files already exist on the host which
is executing the particular Aggregator program. The Aggregator
performs the requested operation, storing the results in a
file whose name was specified by the DRS or user's application
program and is located on the host executing the Aggregator.

The CDMP provides the application programmer with important
capabilities to:

1. Request database accesses in a non-procedural data
manipulation language (the NDML) that is independent
of the data manipulation language (DML) of any
particular Data Base Management System (DBMS)

2. Request database access using a DML that specifies
accesses to a set of related records rather than to
individual records, i.e. using a relational DML

3. Request access to data that are distributed across
multiple databases with a single DML command, without
knowledge of data locations or distribution details

Information about external schemas, the conceptual schema,
and internal schemas (including data locations) are provided by
CDMP access to the Common Data Model (CDM) database. The CDM is
a relational database of metadata pertaining to IISS. It is
described by the CDMI information model using IDEFI.

Please refer to the Software Availability Bulletin, Volume
III, Part 16, CI# SAB620326000, for current IISS software and
documentation availability.

1.2 Functional Summary

The overall objective of this CI is to perform relation
join, union, outer join and not-in-set operations upon
intermediate re- sults of a multi-database transaction. It,
along with the DRS, Request Processors, and local DBMS modules,
performs the run-time evaluation of commands presented to them
by application processes.

There are two Aggregator programs residing on each site.
They are identical except that one is invokable via an NTM
message while the other is callable as a subroutine. The DRS
determines which to use for each aggregation. This development
specification describes the generic Aggregator CI, which is to
be implemented as multiple Aggregator programs. The DRS or
application program causes an Aggregator program to be executed
for each join, union, outer join or not-in-set operation which
is required to evaluate a particular NDML request. It is the
DRS's responsibility to ensure that both operands to the
operation already reside in files on the site where the
operation is to be performed. When an Aggregator is activated,

1-3

DS 620341320
30 September 1990

it is passed the parameters needed. These parameters include
the operand and the result file name. A logical channel ID is
also a part of the activation message. This is a communications
channel created between the Aggregator and the DRS. The reply
message is sent by the Aggregator over this channel when the
operation is completed.

The Aggregator sorts the files containing the operands,
creates the file which will contain the resultant table, reads
the operand files, performs the join, union, outer join or
not-in-set operation and stores the results in the resultant
relation file. Finally, it deletes the operand files, sends a
completion message to the DRS or user application program which
created it, and terminates.

Major functions to be described in this document for this
CI are:

o Function AGGI Aggregator Inputs
o Function AGG2 Perform Union
o Function AGG3 Perform Join
o Function AGG4 Perform Outer Join
o Function AGG5 Perform Not-In-Set Selection

1-4

DS 620341320
30 September 1990

SECTION 2

DOCUMENTS

2.1 Applicable Documents

Following is a list of applicable documents relating to
this Computer Program Development Specification for the Common
Data Model Processor (CDMP) Aggregator.

Related ICAM Documents included:

UM620341001 CDM Administrator's Manual

TBM620341000 CDM1, An IDEFI Mcde! of the Common
Data Model

UM620341100 Neutral Data Definition Language
(NDDL) User's Guide

PRM620341200 Embedded NDML Programmer's Reference
Manual

UM620341002 ICAM Definition Method for Data
Modelinq (IDEFI-Extended)

DS620341200 Development Specification for the IISS
NDML Precompiler ConfiguraE--n Item

DS620341310 Development Specification for the IISS
Distributed Request Supervisor
Configuration Item

Other references include:

Bernstein, P. A. et. al., "Request Processing in a System
for Distributed Databases (SDD-l)," ACM Transactions on
Database Systems, Vol 6, No 4, December 19F1.

Blasgen, M. W., Eswaran, K. P., "On the Evaluation of
Quebies in A Relational Data Base System," IBM
Research Report RJ1745, IBM Research Laboratory,
San Jose, CA, April 1976.

Chamberlin, D. D., "Relational Data Base Management
Systems," Computing Surveys, Vol 8, No 1, May 1976.

Daniels, D., et. al., "An Introduction to Distributed
Request Compilation in R*," IBM Research Report RJ3497,
IBM Research Laboratory, San Jose, CA, June 1982.

Dejean, J.P., Test Bed System Development
Specifications, General Electric Co., November 9, 1982.

2-1

DS 620341320
30 September 1990

Epstein, R., Stonebraker, M., and Wong, E., "Distributed
Request Processing in a Relational Database System," Pro-
ceedinqs of the ACM SIGMOD International Conference,
Austin, TX, June, 1978.

Lindsay, B. G., et. al., "Notes on Distributed Databases,"
IBM Research Report RJ2571, IBM Research Laboratory, San
Jose, CA, July 14, 1979.

Williams, R., et. al., "R*: An Overview of the
Architecture," IBM Research Report RJ3325, IBM Research
Laboratory, San Jose, CA, December 12, 1981.

2.2 Terms and Abbreviations

The following acronyms are used in this document:

APL Attribute Pair List

AUC Attribute Use Class

CDMP Common Data Model Processor

CI Configuration Item

CS Conceptual Schema

DML Data Manipulation Language

DRS Distributed Request Supervisor
(previously SS - Stager/Scheduler)

ES External Schema

ICAM Integrated Computer Aided Manufacturing

IISS Integrated Information Support System

IS Internal Schema

NDML Neutral Data Manipulation Language

NIS Not In Set

NTM Network Transaction Manager

RP Request Processor

RFT Result Field Table

SDS System Design Specification

2-2

DS 620341320
30 September 1990

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

3.1.1 System Capacities

The capacity of the Aggregator is limited by the capacity
of the file systems where the operands and resultant relations
are stored and by the sorting capabilities of the computer. It
is the responsibility of each site's system administrator to
ensure that file system and memory allocation capacities are
adequate.

3.1.2 Interface Requirements

3.1.2.1 Interface Blocks

This CI is the mechanism that aggregates results of
logically related intermediate responses to a distributed data-
base request. Its interfaces include input in the form of two
request formats and output in the form of a table (relation) and
status responses.

3.1.2.2 Detailed Interface Definition

The specific interface relationships of this CI to
other CIs and modules are described in detail for appropriate
functions in Section 3.2.

3.2 Detailed Functional Requirements

The following subsections document each of the Aggregator's
major functions identified in Section 1.2.

3.2.1 Function AGGI: Aggregator Inputs

This function establishes all inputs required for each
aggregation function.

3.2.1.1 Inputs

The input to this function is the operation request,
which is part of the message body sent by the DRS or user
application program, when the Aggregator is activated.

The format of a join, outer join, union, or not-in-set
request is the following:

(JOIN rell rel2 APL rell-rft rel2-rft result-rft
OUTJOIN
UNION
NOT-IN-SET)

3-1

DS 620341320
30 September 1990

where:

rell = file name of the first operand.

rel2 = file name of the second operand.

APL = pointer to attribute pair list (APL)
entry containing information about
the join fields. This field is 0 for a
union request.

rell-rft = pointer to Result Field Table (RFT)
entry containing field format
information for rell for a join and outer
join request. This field is 0 for a
union request. For a not-in-set this
field also represents the rft for the
result.

rel2-rft = pointer to an RFT entry for rel2. This
field is 0 for a union request.

result-rft = pointer to an RFT entry for the result
table.

There is only one RFT pointer for a union request because
the formats of both files and the result are identical. The
requested operation of JOIN is represented by "4", UNION by "5",
OUTER JOIN by "7" and NOT-IN-SET by "6".

The format of the APL is a list of join attribute pairs.

Each entry in the list contains the following:

rell attrl rel2 attr2 link

where:

rell = not used

attrl = Attribute Use Class number (AUC) of an
attribute from rell

rel2 not used

attr2 = AUC from rel2

link = not used

Each entry in the RFT has the following format:

rel attr type size ND PID is-ptr

where:

rel = not used

3-2

DS 620341320
30 September 1990

attr = AUC of the field

type = field type (alphabetic, numeric, etc.)

size = number of bytes in the field

ND = number of decimal places of the field

PID = not used

is-ptr = not used

3.2.1.2 Processing

The aggregator inputs are passed to the main aggregator
routine by an NTM message which is then unpacked into
appropriate tables. These tables are then passed to the
aggregator subroutine for processing. The aggregator subroutine
also is passed these tables when initiated by a user application
program.

3.2.2 FUNCTION AGG2: Perform Union

This function performs a Union on two like input operands
and stores the result of the Union in a result file.

3.2.2.1 FUNCTION

The Union function appends one aggregator input file to the
second aggregator input file creating a results file. The two
input files must match in number, character types, and size for
each field/columns. The starting routine for the main Union, or
the calling routine for the in-line Union, will insure that the
first input file is the larger of the two. The Union input
files will not be sorted.

3.2.2.2 CONFIGURATION

3.2.2.2.1 MAIN UNION MODULE

The Union aggregator function is performed as a stand alone
function when started by the DRS with a message from the NTM.
The main Union module will receive and unpack the message from
the NTM to determine the two Union input files. The main Union
module then calls the subroutine Union module which controls the
processing of the Union aggregator.

3.2.2.2.2 SUBROUTINE UNION MODULE

The subroutine Union module is called by the main Union
routine, the DRS, or the user AP and is passed the names of the
Union input files. The Union subroutine is the controlling

3-3

DS 620341320
30 September 1990

routine for all the Union aggregator logic and will return the
results file name and status to the calling routine. No result
record count is provided by the Union aggregator.

3.2.2.3 STANDARDIZATION

All aggregator functions have been standardized to
facilitate maintenance and commonality among routines and
functions. The Union aggregator does not use any common
aggregator routines due to the limited amount of processing.

3.2.2.4 DIAGRAM/CHART - UNION AGGREGATOR

-------------- +------------- -------------

DRS/NTM USER AP DRS

--------- 4---- + --- +--------

---------------------- ----------------------------- 4
+----------------------

UNION AGG MAIN

------- +---------------4

I
+------+-----------------

UNION AGG SUBROUTINE

+------------------- 4

3.2.2.5 UNION INPUTS

The Union aqgregator receives two input file names as
input. The two input files must match in number, size, and
character type for each column.

3.2.2.6 PROCESSING

3.2.2.6.1 UNION MAIN ROUTINE

The Union main routine is started by the DRS through an NTM
message. The routine receives the message which contains the

3-4

DS 620341320
30 September 1990

name of the two Union input files. The main routine then calls
the Union subroutine and passes it the name of the two input
files.

3.2.2.6.2 UNION SUBROUTINE

The Union subroutine is the controlling routine for the
Union aggregator logic. When called by the Union main, the DRS
or a user AP, the Union subroutine performs an append of the
second input file to the first input file. The DRS and/or the
user AP will insure that the second input file is the smaller of
the two input files. Upon completion, the first input file will
become the results file.

3.2.2.6.3 PROCESSING LOGIC

Each record of the second input file is read and written to
the first input file. This continues until end-of-file is
reached. Both files are closed and the second input file is
deleted.

The Union subroutine then passes the name of the results
file to the calling program along with the program status.

The Union aggregator contains no special logic for
processing of null values.

3.2.2.7 OUTPUTS

The Union output consists of the result of the appended
input files. The first input file becomes the output results
file and the name is passed to the calling routine with the
program status.

3.2.2.8 ERROR HANDLING

The Union aggregator will use the standard "CDMP" error
handling procedures with the addition of each module called
having an identifying error message that indicates the error and
where the error occurred.

3.2.3 FUNCTION AGG3: Perform Join

This function performs a Join on the input operands and
stores the result in a specified file.

3.2.3.1 FUNCTION

The Join Aggregator performs a Join of two files based on
the qualifications of the keys in each file. The result file is
created from the Results Field Table (RFT) which could include

3-5

DS 620341320
30 September 1990

combinations of fields from each file. If the keys from the
first file match the keys from the second file, then a record
made from results RFT is written to the results file. The key
fields are compared based on the qualifications of two fields
with an operator. The legal relational operators are =, <, >,
<=, >=, and !=. At least one of the operators in multiple key
comparisons must be an "=".

3.2.3.2 CONFIGURATION

The Join is configured as a Main Routine started by the NTM
when called by the DRS, or as a Subroutine that can be called
directly from the DRS for single node operations, or by a user
AP for an intersect on a combined query. The Main Routine
receives and unpacks the NTM messages containing the input files
and descriptions, the Attribute Pair List (APL), and a Results
Field Table (RFT) for each input and result file. The input
files are the result of a user's Application Processor (AP)
accessing a database and returning records that will participate
in the Join. The subroutine is the controlling routine for the
Join Logic and may be called by the main routine, the DRS, or
the user's AP.

3.2.3.3 STANDARDIZATION

All Aggregator functions have been standardized to use the
same file handling routines, sorting routines, and functions.
This will aid in maintenance and commonality.

3.2.3.4 STRUCTURE CHART DIAGRAM

---------- ----------. .-------------
[DRS/NT USERORS

4.-- +--------

AGO AO
n---------------

4... - -- / -----------

------ ------------

+----I ---------- +-----------... --

+-m----------------------- -- +36N AG CMPARE ROUTNE

3-6

DS 620341320
30 September 1990

3.2.3.5 JOIN PROCESSING

The Join routine is called by the user's AP. This routine
controls all Join processing and receives the input files, APL
and RFT. It is used to communicate with the NTM and to unpack
the NTM messages. The Join Subroutine, containing the join
logic, is then called and the APL, RFT, and input file names are
passed.

3.2.3.5.1 SUBROUTINE INPUTS

The Join Aggregator Subroutine is called by the Main Join
Routine, the DRS, or a user's AP. The Join Subroutine receives
the following inputs:

Input File 1
Input File 2
APL
RFT For Input File 1 (RFT)
RFT For Input File 2 (RFT2)
RFT For Results File (RFTR)

ATTRIBUTE PAIR LIST (APL)

01 JQG-ATTRIBUTE-PAIR-LIST.
03 APL-MAX PIC 99.
03 APL-USED PIC 99.
03 APL-ROW-SIZE PIC 99.

* APL-ROW-SIZE IS NEEDED BY DRS FOR CALCULATING
THE TOTAL MESSAGE SIZE TO THE AGGREGATORS.

.

03 APL-ROW OCCURS 60 TIMES INDEXED BY APL-INDEX.
05 JQG-SUBTRANSL PIC 999.
05 JQG-ATTRL PIC 9(6).
05 JQG-SUBTRANSR PIC 999.
05 JQG-ATTRR PIC 9(6).
05 JQG-NEXT-PTR PIC 99.
05 JQG-OP PIC XX.

RFT

There is a separate RFT for each input file and the results
file. The tables are identical except in name.

3-7

DS 620341320

30 September 1990

THE RESULT FIELD TABLES

01 RFT
03 RFT-MAX PIC 999 VALUE 200.
03 RFT-USED PIC 999 VALUE 0.
03 RFT-ROW-SIZE PIC 999 VALUE 23.

,

* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.
.

03 RFT-ENTRY OCCURS 200 TIMES
INDEXED BY RFT-INDEX.
05 RFT-PID PIC 9(6).
05 RFT-SUBTRANS PIC 999.
05 RFT-ATTR PIC 9(6).
05 RFT-SIZE PIC 999.
05 RFT-IS-PTR PIC 99.
05 RFT-TYPE PIC X.
05 RFT-ND PIC 99.

01 RFT2.
03 RFT2-MAX PIC 999 VALUE 200.
03 RFT2-USED PIC 999 VALUE 0.
03 RFT2-ROW-SIZE PIC 999 VALUE 23.

* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.

03 RFT2-ENTRY OCCURS 200 TIMES
INDEXED BY RFT2-INDEX.
05 RFT2-PID PIC 9(6).
05 RFT2-SUBTRANS PIC 999.
05 RFT2-ATTR PIC 9(6).
05 RFT2-SIZE PIC 999.
05 RFT2-IS-PTR PIC 99.
05 RFT2-TYPE PIC X.
05 RFT2-ND PIC 99.

01 RFTR.
03 RFTR-MAX PIC 999 VALUE 200.
03 RFTR-USED PIC 999 VALUE 0.
03 RFTR-ROW-SIZE PIC 999 VALUE 23.

.

* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.
.

03 RFTR-ENTRY OCCURS 200 TIMES
INDEXED BY RFTR-INDEX.
05 RFTR-PID PIC 9(6).
05 RFTR-SUBTRANS PIC 999.
05 RFTR-ATTR PIC 9(6).

3-8

DS 620341320
30 September 1990

05 RFTR-SIZE PIC 999.
05 RFTR-IS-PTR PIC 99.
05 RFTR-TYPE PIC X.
05 RFTR-ND PIC 99.

3.2.3.5.2 SORT JOIN OPERATORS (JQG-OP)

The Join operators in the APL are sorted to insure that an
operator exists and that all "=" operators are first on the

APL. Use the following logic:

Unpack APL-ROW into the following table:

01 APL-WS-TABLE.
03 APL-ROW-WS OCCURS 60 TIMES INDEXED BY APL-INDEX-WS.

05 JQG-SUBTRANSL-WS PIC 9(3).
05 JQG-ATTRL-WS PIC 9(6).
05 JQG-SUBTRANSR-WS PIC 9(3).
05 JQG-ATTRR-WS PIC 9(6).
05 JQG-NEXT-PTR-WS PIC 99.
05 JQG-OP-WS PIC XX.

This table will contain the sorted APL and will be used
during comparison based on the key JQG-OP containing the value

IF JQG-OP (APL-INDEX) contains the value "="

MOVE APL-ROW (APL-INDEX) TO
APL-ROW-WS (APL-INDEX-WS)

UNTIL APL-INDEX > APL-USED.

Then, for all other operators: (>, <, >=, <=, !=):

IF JQG-OP(APL-INDEX) NOT EQUAL "="
MOVE APL-ROW (APL-INDEX) TO APL-ROW-WS

(APL-INDEX-WS)
MOVE JQG-OP(APL-INDEX) TO CURRENT-APL-OPERATOR

IF OP-GT OR OP-LT OR OP-NE
MOVE 1 TO APL-OPERATOR-STATUS

UNTIL APL-INDEX > APL-USED.

3.2.3.5.3 RFT SWITCHING

Due to the possibility of having both local and remote
subtransactions, RFT-SUBTRANS(1) is checked to see if it is
equal to JQG-SUBTRANSL-WS(l). If it is not equal, the RFT and
RFT2 tables need to be switched since they do not correspond to
their matching subtransactions.

3.2.3.5.4 NAMFIL

Call the File I/O Primitive NAMFIL to retrieve a file name
for the results file and two temporary files that will be used
in the sort function.

3-9

DS 620341320
30 September 1990

3.2.3.5.5 FIND KEY ATTRIBUTES

Find the key attributes for each file and move the
attribute description to the input file tables SORT-FILE1 and
SORT-FILE2. The key attributes are found in the APL table and
then compared to the RFT table to determine the attribute
description. The JQG-ATTRL is compared to the RFT-ATTR until a
match is found. This is repeated for the second input file with
JQG-ATTRR compared to RFT-ATTR.

3.2.3.6.6 CREATE THE RESULTS FILE RFT

Compare RFTR-ATTR to each RFT-ATTR and RFT2-ATTR entry to
determine in which file the ATTR resides. Maintain current
record position to determine START-POS and keep count of size to
determine record length. When a match is found

RFTR-ATTR (RFTR-INDEX) = RFT-ATTR (RFT-INDEX) or
RFT2-ATTR (RFT2-INDEX)

the corresonding table entries are moved to the results file
table shown below:

01 FILER-DESC-TABLE.
03 RESULTS-FILE-RFT-DESC OCCURS 200 TIMES

INDEXED BY RES-RFT-INDEX.
05 RES-FILE-NO PIC 9.
05 RES-ATTR PIC 9(9).
05 RES-SIZE PIC 9(3).
05 RES-TYPE PIC X.
05 RES-NO-DIG PIC 99.
05 RES-START-POS PIC 9(4).
05 RES-END-POS PIC 9(4).
05 RES-NULL-POS PIC 9.

This allows creation of the result file record for
the records meeting the compare criteria.

3.2.3.6.7 SORT THE INPUT FILES

The two input files must be sorted in key order to
facilitate any comparisons. The sort is performed by a File I/O
Primitive. The routine is called and passed the input file
names, the temporary file names that will receive the result of
the sort, and the descriptions of each file's key fields.

3.2.3.6.8 OPEN AND READ FILES

Open input and result files. Read first record for both
input files into buffers with a maximum record length of 2025
characters. Open and read are performed by File I/O Primitives.

3-10

DS 620341320
30 September 1990

3.2.3.6.9 SET MULTIPLE KEY CONDITIONS

Set up m,,Itiple key conditions based on number of
APL-USED. Every key for each record will be compared based on
the operator for each APL entry.

3.2.3.6.10 CREATE ATTRIBUTE BUFFERS

Read the sorted attribute descriptions from the RFT into
input field descriptions for files 1 and 2. The left side
buffer is for file 1 and the right side buffer is for file 2.

Set up the null conditions check. If either record key
field is a null value, then the two key fields cannot be
compared and the records cannot match. The null flags are
indicated in each input file record buffer. Each record buffer
is in the following format:

01 FILEx-BUFFER.
03 FILEx-REC-BUFFER PIC X(2025)
03 NULL-FILEx-BUFFER REDEFINES FILEx-REC-BUFFER

PIC X OCCURS 2025 TIMES
INDEXED BY NFLx-INDX.

where x is either 1 or 2.

To determine the position of a field in the buffer for
comparison, use an offset of RFT-USED + 1 as the record starting
position.

The null buffer flag will indicate "0" for not NULL and
"I" for Null.

3.2.3.6.11 CHECK FIELD CHARACTER TYPES

The only allowable type comparisons are character to
character, numeric to numeric or siqned, or signed to signed or
numeric. Stop processing if there is a character type in one
file and a non-character type in the other and display an error
message.

3.2.3.6.12 CONVERSION AND COMPARISON OF FIELDS

The compare and conversion routines are called by the Join
Subroutine. They are Fortran routines that convert the buffers
to a standard data type, compare the values and set the join
condition. If the field buffer character type is numeric or
signed, the buffer must be converted to a real number for
comparison. Signed overpunched numbers are converted to
positive or negative digit by a Fortran routine according to the
VAX conversion chart. These routines are VAX dependent.

3-11

DS 620341320
30 September 1990

After all conversion is completed, the two fields are
compared to set the comparison condition. This condition is the
output of the comparison routine.

Condition 1 - Left side is less than right side.
Condition 2 - Left side is equal to right side.
Condition 3 - Left side is greater than right side.
Condition 4 - Left side is equal to right side and

left side is equal to previous left
side.

3.2.3.6.13 MULTIPLE KEY PROCESSING

For multiple keys, if the condition matches the
CURRENT-APL-OPERATOR (>, <, =, <=, >=, !=>) the
next key field is compared until MULTI-KEY-IND >
APL-USED. When all keys have been compared, the
results are written or the record comparisons are
terminated since the set of fields did not meet the
condition. Another Filel or File2 record is then
read.

3.2.3.6.14 JOIN PROCESSING

JOIN CONDITION OF 1

IF operator is "=" or ">" or ">=" (no match found)
IF MATCH-CNT > 1

backspace file2 MATCH-CNT times
read file2
read filel
move 1 to MATCH-CNT

ELSE
read filel.

IF operator is "<" or "<=" or "!="
IF more than 1 key and all keys not yet read

INCREMENT KEY INDEX
ELSE

write results
read file2
IF EOF (file2)

backspace file2 MATCH-CNT times
read file2
read filel
move 1 to MATCH-CNT

ELSE
increment MATCH-CNT.

JOIN CONDITION OF 2

IF operator is "=" or ">=" or "<="

3-12

DS 620341320
30 September 1990

IF more than 1 key and all keys not yet read
INCREMENT KEY-INDEX

ELSE
write results
read file2
IF EOF (file2)

backspace file2 MATCH-CNT times
ELSE

add 1 to MATCH-CNT.

IF operator is ">"
IF MATCH-CNT > 1

backspace file2 MATCH-CNT times
read file2
read filel
move 1 to MATCH-CNT

ELSE
read filel.

IF operator is "
read file2
IF EOF (file2)

read filel.

IF operator is "!="
read file2
IF EOF (file2)

IF MATCH-CNT > 1
backspace file2 MATCH-CNT times
read file2
read filel
move 1 to MATCH-CNT

ELSE
read filel

ELSE
add 1 to MATCH-CNT.

JOIN CONDITION OF 3

IF operator is "<" or "<=" or "="
read file2
IF EOF (file2)

read filel.

IF operator is "!=" or ">" or "
IF more than 1 key and all keys not yet read

increment KEY-INDEX
ELSE

write results
read file2
IF EOF (file2)

backspace file2 MATCH-CNT times
read file2
read filel
move 1 to MATCH-CNT

ELSE
increment MATCH-CNT.

3-13

DS 620341320
30 September 1990

JOIN CONDITION OF 4

IF operator is 11=1 or ">=11 or <

IF more than 1 key and all keys not yet read
increment KEY-INDEX

ELSE
write 7esuits
read file2
IF EOF (file2)

backspace file2 MATCH-CNT times
ELSE

increment HATCH-CNT.

IF operator is >"or "<"
read fulel.

IF operator is "=

read file2
IF EOF (file2)

backspace file2 MATCH-CNT times
read file2
read fulel
move 1 to I4ATCH-CNT

ELSE
iarement MATCH-CNT.

<CURENT-APr-'OPEIAT0R>

OP-GT OP-LT OP-EQ OP-LE OP-0E OP-NE
> <c <:I I=

----------------- 4---------------4---------------4------------------------------
MATCH MATCH IMATCH

READ IFOUND IREAD FOUND IREAD IFOUNDCNIFL1 WIEFILZl WRITE FILZl WRITE
RESULTS RESULTS RESULTS
READ FILE? READ FILE? READ FILE?

I IMATCH IMATCH IMATCH
READ IREAD IFOUND FOUND IFOUND IREADCND2 - IE FILE? WRITE IWRITES WRITE IFILE?

jREAD FILE2 READ FILE? READ FILE?

MATCH MATCH MATCH
FOUND READ READ READ FOUND FOUND
RESULTS IRESULTS RESULTS
READ FILE? READ FILE? READ FILE?1

I--------.-------4----------------------------------- ----------- ------------------------

MATCH MATCH MATCH
REDREAD IFOUND FOUND FOUND READCND4IFILZI FILEl WRITE WRITE WRITE FILE?

RESULTS RESULTS RESULTS
IREAD FILE2? READ FILE?] READ FILE?2

--------------- ----------- ----------- ---------- ---------- ------------

DS 620341320
30 September 1990

3.2.3.6.15 MATCHING RECORD PROCESSING

Each instance of matching keys in Filel will be
repeated for each and every instance of matching
keys in File2.

EXAMPLE:

This query:

Select 1.A, 1.B, 1.C, 2.B, 2.C from
A, B

where

l.A = 2.A and
1.B <= 2.B;

File 1 File 2

A B r A B C
A 1 x A 1 RR
A 1 Y A 1 RY
A 1 Z B 1 RX
B 1 X B 2 RZ
B 2 Y

Produces this results file:

l.A 1.B I.C 2.B 2.C
A 1 X 1 RR
A 1 X 2 RY
A 1 Y 1 RR
A 1 Y 2 RY
A 1 Z 1 RR
A 1 Z 2 RY
B 1 X 1 RX
B 1 X 2 RZ
B 2 Y 2 RZ

3.2.3.6.16 BACKSPACE LOGIC

The BACKSPACE logic for rewinding File2 requires
that File2 be backspaced for each record which matches a Filel
record. MATCH-CNT keeps a running total of the number of
records to backspace for current Filel record. This process
uses the File I/O Primitive SEKFIL to backspace, performing it
MATCH-CNT times. Use of SEKFIL to obtain records that match the
current Filel record is invoked when:

1. The current Filel record key is less than the
current File2 record key (Condition 1) and MATCH-CNT is greater
than 1 or File2 is EOF.

3-15

DS 620341320
30 September 1990

2. The current Filel record key is equal to the
current File2 record key (Condition 2) and (CURRENT-APL-OPERATOR
is ">" and MATCH-CNT is greater than 1) OR (CURRENT-APL-OPERATOR
is ">=" "=, OR ,,=,, and File2 is EOF).

3. The current Filel record key is greater than
current File2 record key (Condition 3) and (CURRENT-APL-OPERATOR
is ">" >=" or 'If=" and File2 is EOF).

4. The current Filel record key is equal to
previous Filel record key and current Filel record key is equal
to current File2 record key (Condition 4) and
(CURRENT-APL-OPERATOR is ">=", "<=", "-", or ".=" AND File2 is
EOF).

The counter used to backspace the current File2
record is cleared after the backspace process has been completed
for that record.

3.2.3.6.17 CREATE THE RESULTS FILE

First, the null flags, one for each attribute
written to the results file, must be placed at the beginning of
each record. Next, the Filel and File2 fields are put into the
results file buffer using RFTR-INDEX. This is then written to
the results file, and the number of records output is
incremented.

3.2.3.6.18 JOIN PROCESSING LOGIC

The Join Subroutine will stop processing after all records
in file 1 have been read and compared. The open files are all
closed, the temporary input files are deleted and the name of
the results file, number of results records, and the program
status are passed back to the main routine or the calling
routine.

The Main Join Routine receives the results file
name, the results file record count, and the return status. The
main routine then calls NSEND to send a message to the NTM
giving the results file name, count, and status. To shut down
the routine, an NTM Message is sent via TRMNAT that tells the
NTM to terminate the Main Join Routine.

3.2.3.7 OUTPUT

The Join Aggregator will return the results file name,
the results record count, and the pro~ram status. The results
file can be a combination of the two input files, the format and
record layout of which are found in the result file RFT.

3.2.3.8 ERROR HANDLING

The Join Aggregator uses the standard CDMP error
handling procedures. In addition, each module called will have

3-16

DS 620341320
30 September 1990

an error message/code to identify the error and indicate where

the error occurred.

3.2.4 FUNCTION AGG4: Perform Outer Join

This function performs an Outer Join operator on two
input operands and stores the results in a specified file.

3.2.4.1 FUNCTION

The Outer Join Aggregator joins two files based on an
Outer Join qualification on the keys in each file. The Outer Join
is an extention of a join in which rows in the first file having
no match in the second file appear in the result file with null
values for any fields in the second file.

Select A.1, A.2, B.1, B.2
From A, B
Where A.1 U= B.1;

can be logically stated as

if A.1 = B.1
WRITE A.1, A.2, B.1, B.2

Else
WRITE A.1, A.2, NULL, NULL.

EXAMPLE:

Select A.Name, A.No, B.Name, B.No
From DEPT A, PROJECT B
Where A.Name U= B.Name

NAME NO NAME NO

BLACK 99 BLACK 199
BLUE 13 ELDAR 98
BROWN 12 GREEN 18
GREEN 18 HENRY 01
JONES 14 SMITH 16
SMITH 16 ZORK 44

RESULT

A.NAME A.NO B.NAME B.NO

BLACK 99 BLACK 199
BLUE 13 (null) (null)
BROWN 12 (null) (null)
GREEN 18 GREEN 18
JONES 14 (null) (null)
SMITH 16 SMITH 16

3-17

DS 620341320
30 September 1990

Only another Outer Join operator may be used with an Outer
Join operator.

Where A.Name U= N.Name and

A.NO U= B.NO;

would yield

RESULT

A.NAME A.NO B.NAME B.NO

BLACK 99 (null) (null)
BLUE 13 (null) (null)
BROWN 12 (null) (null)
GREEN 18 GREEN 18
JONES 14 (null) (null)
SMITH 16 SMITH 16

3.2.4.2 CONFIGURATION

The Main Outer Join Routine is activated by the NTM when
requested by the DRS. The Main Outer Join Routine then receives
and unpacks an NTM message containing the input files and
descriptions, the Attribute Pair List (APL), and a Results Field
table (RFT) for each input and results file. The Outer Join
Subroutine is then called and the APL, RFT, and input file names
are passed. The Main Outer Join Routine is used to communicate
with the NTM and to unpack the NTM messages. The Outer Join
Subroutine contains the Outer Join processing logic.

3.2.4.3 OUTER JOIN PROCESSING

3.2.4.3.1 SUBROUTINE INPUTS

The Outer Join Aggregator Subroutine is called by the
Main Outer Join routine, the DRS, or a user's AP. The Outer Join
Subroutine receives the following inputs:

Input File 1
Input File 2
APL
RFT For Input File 1 (RFT)
RFT For Input File 2 (RFT2)
RFT For Results File (RFTR)

ATTRIBUTE PAIR LIST (APL)

01 JQG-ATTRIBUTE-PAIR-LIST.
03 APL-MAX PIC 99.
03 APL-USED PIC 99.
03 APL-ROW-SIZE PIC 99.

*

* APL-ROW-SIZE IS NEEDED BY DRS FOR CALCULATING
THE TOTAL MESSAGE SIZE TO THE AGGREGATORS.

3-18

DS 620341320
30 September 1990

03 APL-ROW OCCURS 60 TIMES INDEXED BY APL-INDEX.
05 JQG-SUBTRANSL PIC 999.
05 JQG-ATTRL PIC 9(6).
05 JQG-SUBTRANSR PIC 999.
05 JQG-ATTRR PIC 9(6).
05 JQG-NEXT-PTR PIC 99.
05 JQG-OP PIC XX.

RFT

There is a separate RFT for each input file and the results
file. The tables are identical except in name.

THE RESULT FIELD TABLES

01 RFT.
03 RFT-MAX PIC 999 VALUE 200.
03 RFT-USED PIC 999 VALUE 0.
03 RFT-ROW-SIZE PIC 999 VALUE 23.

,

* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.
,

03 RFT-ENTRY OCCURS 200 TIMES
INDEXED BY RFT-INDEX.
05 RFT-PID PIC 9(6).
05 RFT-SUBTRANS PIC 999.
05 RFT-ATTR PIC 9(6).
05 RFT-SIZE PIC 999.
05 RFT-IS-PTR PIC 99.
05 RFT-TYPE PIC X.
05 RFT-ND PIC 99.

01 RFT2.
03 RFT2-MAX PIC 999 VALUE 200.
03 RFT2-USED PIC 999 VALUE 0.
03 RFT2-ROW-SIZE PIC 999 VALUE 23.

* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.

03 RFT2-ENTRY OCCURS 200 TIMES
INDEXED BY RFT2-INDEX.
05 RFT2-PID PIC 9(6).
05 RFT2-SUBTRANS PIC 999.
05 RFT2-ATTR PIC 9(6).
05 RFT2-SIZE PIC 999.
05 RFT2-IS-PTR PIC 99.
05 RFT2-TYPE PIC X.
05 RFT2-ND PIC 99.

3-19

DS 620341320
30 September 1990

01 RFTR.
03 RFTR-MAX PIC 999 VALUE 200.
03 RFTR-USED PIC 999 VALUE 0.
03 RFTR-ROW-SIZE PIC 999 VALUE 23.

.
* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.
,

03 RFTR-ENTRY OCCURS 200 TIMES
INDEXED BY RFTR-INDEX.
05 RFm R-PID PIC 9(6).
05 RFTR-SUBTRANS PIC 999.
05 RFTR-ATTR PIC 9(6).
05 RFTR-SIZE PIC 999.
05 RFTR-IS-PTR PIC 99.
05 RFTR-TYPE PIC X.
05 RFTR-ND PIC 99.

3.2.4.3.2 RFT SWITCHING

Due to the possibility of having both local and remote
subtransactions, RFT-SUBTRANS(1) is checked to see if it is
equal to JQG-SUBTRANSL-WS(l). If it is not equal, the RFT and
RFT2 tables need to be switched since they do not correspond to
their matching subtransactions.

3.2.4.3.3 NAMFIL

Call the File I/O Primitive NAMFIL to retrieve a file name
for the results file and the two temporary files that will be
used in the sort function.

3.2.4.3.4 SORT JOIN OPERATORS (JQG-OP)

Search the Outer Join operators in the APL to insure that
an "U=" operator exists. All operators must be "U=", since only
another Outer Join operator may be used with an Outer Join
operator.

3.2.4.3.5 FIND KEY ATTRIBUTES

Find the key attributes for each file and move the
attribute description to the input file tables SORT-FILE1 and
SORT-FILE2. The key attributes are found in the APL table and
then compared to the RFT table to determine the attribute
description. The JQG-ATTRL is compared to the RFT-ATTR until a
match is found. This is repeated for the second input file with
JQG-ATTRR compared to RFT-ATTR.

3.2.4.3.6 CREATE THE RESULTS FILE

Compare the results file ATTR (RFTR-ATTR) to each RFT-ATTR
and RFT2-ATTR entry to determine in which file the ATTR resides.
Maintain current record position to determine START-POS and keep

3-20

DS 620341320
30 September 1990

count of size to determine record length. This allows creation
of the result file record for the records meeting the compare
criteria.

3.2.4.3.7 SORT THE INPUT FILES

The two input files must be sorted in key order to
facilitate any comparisons. The sort is performed by a File I/O
Primitive. The routine is called and passed the input file
names, the temporary file names that will receive the result of
the sort (to become the input files), and the descriptions of
each file key fields.

3.2.4.3.8 OPEN AND READ FILES

Open input and result files. Read first record for both
input files into buffers with a maximum record length of 2025
characters. Open and read are performed by File I/O Primitives.

3.2.4.3.9 SET MULTIPLE KEY CONDITIONS

Set up multiple key conditions based on number of APL-USED.
Every key for each record will be compared based on the Outer
Join Operator for each APL entry.

3.2.4.3.10 CREATE ATTRIBUTE BUFFERS

Read the sorted attribute descriptions from the RFT into
input field descriptions for files 1 and 2. The left side
buffer is for file 1 and the right side buffer is for file 2.

Set up the null conditions check. If either record key
field is a null value, the two key fields cannot be compared and
the records cannot match. The null flags are indicated in each
input file record buffer. Each record buffer is in the
following format:

01 FILEx-BUFFER.
03 FILEx-REC-BUFFER PIC X(2025).
03 NULL-FILEx-BUFFER REDEFINES FILEx-REC-BUFFER

PIC X OCCURS 2025 TIMES
INDEXED BY NLFx-INDX.

where x is either 1 or 2.

To determine the position of a field in the buffer for
comparison, use an offset of RFT-USED + 1 as the record starting
position.

The null buffer flag will indicate "0" for not NULL and
"I" for Null.

3-21

DS 620341320
30 September 1990

If a filel record key field is null
Set OTJ-CONDITION to 1
Write results record
Read file 1

If a file2 record key field is null
If EOF (file 2)

Set OTJ-CONDITION to 1
Write results record
Read file 1

ELSE
Set OTJ-CONDITION to 3
Read file 2
If EOF (file2)

Set OTJ-CONDITION to 1
Write results record
Read file 1.

3.2.4.3.11 CHECK FIELD CHARACTER TYPES

The only allowable type comparisons are character to
character, numeric to numeric or siqned, or signed to signed or
numeric. Stop processing if there is a character type in one
file and a non-character type in the other and display an error
message.

3.2.4.3.12 CONVERSION AND COMPARISON OF FIELDS

The compare and conversion routines are called by the Outer
Join Subroutine. These are Fortran routines that convert the
buffers to a standard data type, compare the values and set the
Outer Join condition. If the field buffer character type is
numeric or signed, then the buffer must be converted to a real
number for comparison. Signed overpunched numbers are converted
to positive or negative digit by a Fortran routine according to
the VAX conversion chart. These routines are VAX dependent.

After all conversion is completed, the two fields
are compared to set the comparison condition. This condition is
the output of the comparison routine.

Condition 1 - Left side is less than right side.
Condition 2 - Left side is equal to right side.
Condition 3 - Left side is greater than right side.
Condition 4 - Left side is equal to right side and

left side is equal to previous left side.

3.2.4.3.13 MULTIPLE KEY PROCESSING

For multiple keys, if the condition matches the APL-OP
VALUE (U=), the next key field is compared until MULTI-KEY-IND >
APL-USED. When all keys have been compared, the results are written
or the record comparisons are terminated since the set of fields did
not meet the condition. Another Filel or File2 record is then read.

3-22

DS 620341320
30 September 1990

3.2.4.3.14 OUTER JOIN PROCESSING

OUTER JOIN CONDITION OF 1

IF MATCH-CNT > 1
Backspace File2 MATCH-CNT times
Read Filel
Read File2
Move 1 to MATCH-CNT

ELSE
Write results with nulls for File2 (no match)
Read Filel.

OUTER JOIN CONDITION OF 2

IF more than 1 key and all keys not yet read
increment the key index

ELSE
Write results (match found)
Read File2
IF EOF (File2)

Backspace File2 MATCH-CNT times
Read File2
Read Filel
Move 1 to MATCH-CNT

ELSE
increment MATCH-CNT.

OUTER JOIN CONDITION OF 3

IF EOF (File2)
Set OTJ-CONDITION to 1
Repeat until EOF (Filel):

Write results with nulls for File2 (no match)
Read Filel

ELSE
Read File2
IF EOF (File2)
Move 1 to OTJ-CONDITION
Repeat until EOF (Filel):

Write results with nulls for File2 (no match)
Read Filel.

OUTER JOIN CONDITION OF 4

IF more than 1 key and all keys not yet read
increment key index

ELSE
Write results (match found)
Read File2
IF EOF (File2)

Backspace File2 MATCH-CNT times
Read File2
Read Filel
Move 1 to MATCH-CNT

ELSE
Add 1 to MATCH-CNT.

3-23

DS 620341320
30 September 1990

3.2.4.3.15 MATCHING RECORD PROCESSING

Each instance of matching keys in Filel will be
repeated for each and every instance of matching keys in File2.

EXAMPLE:

This query:

Select I.A, 1.B, I.C, 2.B, 2.C from A, B

Where

l.A U= 2.A and
1.B U= 2.B

FILE 1 FILE 2

A B C A B C

A 1 X A 1 RR
A 1 Y A 1 RY
A 1 Z B 1 RX
B 1 X
B 1 Y

Produces this result file:

1.A 1.B I.C 2.B 2.C

A 1 X 1 RR
A 1 X 1 RY
A 1 Y 1 RR
A 1 Y 1 RY
A 1 Z 1 RR
A 1 Z 1 RY
B 1 X 1 RX
B 1 Y 1 RX

3.2.4.3.16 BACKSPACE LOGIC

The logic for rewinding input File2 requires that File2
be backspaced for each record that matches a Filel record. MATCH-CNT
keeps a running total of the number of records to backspace for
current Filel record. This process uses the File I/O Primitive
SEKFIL to backspace, performing it MATCH-CNT times. Use of SEKFIL to
obtain records that match the current Filel record is invoked when:

1. The current Filel record key is less than the
current File2 record key (Condition 1) and MATCH-CNT is greater than
1.

2. The current Filel record key is equal to the current
File2 record key (Condition 2) AND File2 is EOF.

3-24

DS 620341320
30 September 1990

3. The current Filel record key is equal to the
current File2 record key and is also equal to the previous Filel
record key (Condition 4) and File2 is EOF.

The counter used to backspace the current File2 record
is cleared after the backspace process has been completed for that
record.

3.2.4.3.17 CREATE THE RESULTS FILE

First, the null flags, one for each attribute written
to the results file, must be placed at the beginning of each record.
Next, the Filel and File2 fields are put into the results file buffer
using RFTR-INDEX. If the OTJ-CONDITION is equal to 1, null values
will be moved into the results file buffer in place of the File2
values. This buffer is then written to the results file, and the
number of records output is incremented.

3.2.4.3.18 OUTER JOIN PROCESSING LOGIC

The Outer Join Subroutine will stop processing after
all records in Filel have been read and compared. The open files are
all closed, the temporary input files are deleted and the name of the
results file, number of results records, and the program status are
passed back to the main routine or the calling routine.

The Main Outer Join Routine receives the results file
name, the results file record count, and the return status. The main
routine then calls NSEND to send a message to the NTM giving the
results file name, count, and status. To shut down the routine, an
NTM Message is sent via TRMNAT to tell the NTM to terminate the Main
Outer Join Routine.

3.2.4.4 OUTPUT

The Outer Join Aggregator will return the results file
name, the results record count, and the program status. The results
file can be a combination of the two input files; the format and
record layout of which are found in the result file RFT.

3.2.4.5 ERROR HANDLING

The Outer Join Aggregator uses the standard CDMP error
handling procedures. In addition, each module called will have an
error message/code to identify the error and indicate where the error
occurred.

3.2.5 FUNCTION AGG5: Perform Not-In-Set

This function performs a NOT-IN-SET (NIS) operation
between two input files and stores the results in a specified file.

3.2.5.1 FUNCTION

The NIS Aggregator compares keys of two input files.
Records from the first file whose keys do not match any records keys
from the second file will be written to the results file.

3-25

DS 620341320

30 September 1990

EXAMPLE:

*#SELECT :UVAR1
:UVAR2
:UVAR3*#t

*# FROM

*# (SELECT A.COL1, A.COL2, A.COL3
FROM TABLEA.A#t
*# DIFFERENCE

*# SELECT B.COL1, B.COL2, B.COL3
*# FROM TABLEB.B)

*#ORDER BY UVAR2;

TABLE A TABLE B

COL1 COL2 COL3 COL1 COL2 COL3

BLACK 12 PROD BLACK 12 ENG
BLACK 12 ENG BLUE 14 ENG
BLUE 14 ENG BROWN 16 MIS
BLUE 15 PROD GREEN 19 PROD
BROWN 16 MIS RED 23 PROD
GREEN 19 PROD YELLOW 24 PROD
PURPLE 22 MIS
YELLOW 24 ENG

RESULT

UVARI UVAR2 UVAR3

BLACK 12 PROD
BLUE 15 PROD
PURPLE 22 MIS
YELLOW 24 ENG

3.2.5.1.2 CONFIGURATION

The NIS Aggregator is used to perform the set operator
"Difference" during a combined query and will only be called from
the user's AP. The NIS Aggregator is no longer started by the NTM
or DRS and only exists in the subroutine format.

3-26

DS 620341320
30 September 1990

3.2.5.3 STANDARIZATION

All Aggregator functions have been standardized to use
the same file handling routines, sorting routines, and functions.
This will aid in maintenance and commonality.

3.2.5.4 STRUCTURE CHART

4------- -

INOT-IN-SETI
--------------------- ...-.- ------ - .------

------- --------- -------- ~ ------
SOTFILE UTILITIES I lS PROCESSING1 I IREAD/WRITE FILECS1

-- -- -- ------ - Z_ m- -- - - - - -- -- - -- - -
4--------4------.+IAGG COMPh3M/

CONVERSION

3.2.5.5 NOT IN-SET PROCESSING

The NIS routine is called by the user's AP. This
routine controls all NIS processing and receives the input files,
APL, and RFT.

3.2.5.5.1 INPUTS

The NIS Aggregator receives the following inputs:

Input File 1
Input File 2
APL
RFT for Input File 1 (RFT)
RFT for Input File 2 (RFT2)

These tables are then used to provide the descriptions
of the files, records, and key fields.

ATTRIBUTE PAIR LIST (APL)

3-27

DS 620341320
30 September 1990

01 JQG-ATTRIBUTE-PAIR-LIST.
03 APL-MAX PIC 99.
03 APL-USED PIC 99.
03 APL-ROW-SIZE PIC 99.

,

* APL-ROW-SIZE IS NEEDED BY DRS FOR CALCULATING
THE TOTAL MESSAGE SIZE TO THE AGGREGATORS.

.
03 APL-ROW OCCURS 60 TIMES INDEXED BY APL-INDEX.

05 JQG-SUBTRANSL PIC 999.
05 JQG-ATTRL PIC 9(6).
05 JQG-SUBTRANSR PIC 999.
05 JQG-ATTRR PIC 9(6).
05 JQG-NEXT-PTR PIC 99.
05 JQG-OP PIC XX.

RFT

There is a separate RFT for each input file and the results
file. The tables are identical except in name.

THE RESULT FIELD TABLES

01 RFT.
03 RFT-MAX PIC 999 VALUE 200.
03 RFT-USED PIC 999 VALUE 0.
03 RFT-ROW-SIZE PIC 999 VALUE 23.

*

* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.
*

03 RFT-ENTRY OCCURS 200 TIMES
INDEXED BY RFT-INDEX.
05 RFT-PID PIC 9(6).
05 RFT-SUBTRANS PIC 999.
05 RFT-ATTR PIC 9(6).
05 RFT-SIZE PIC 999.
05 RFT-IS-PTR PIC 99.
05 RFT-TYPE PIC X.
05 RFT-ND PIC 99.

01 RFT2.
03 RFT2-MAX PIC 999 VALUE 200.
03 RFT2-USED PIC 999 VALUE 0.
03 RFT2-ROW-SIZE PIC 999 VALUE 23.

,

* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.
,

3-28

DS 620341320
30 September 1990

03 RFT2-ENTRY OCCURS 200 TIMES
INDEXED BY RFT2-INDEX.
05 RFT2-PID PIC 9(6).
05 RFT2-SUBTRANS PIC 999.
05 RFT2-ATTR PIC 9(6).
05 RFT2-SIZE PIC 999.
05 RFT2-IS-PTR PIC 99.
05 RFT2-TYPE PIC X.
05 RFT2-ND PIC 99.

01 RFTR.
03 RFTR-MAX PIC 999 VALUE 200.
03 RFTR-USED PIC 999 VALUE 0.
03 RFTR-ROW-SIZE PIC 999 VALUE 23.

,

* THE ROW-SIZE IS NEEDED BY DRS TO DETERMINE THE
* TOTAL SIZE OF THE MESSAGE TO THE AGGREGATOR.
.

03 RFTR-ENTRY OCCURS 200 TIMES
INDEXED BY RFTR-INDEX.
05 RFTR-PID PIC 9(6).
05 RFTR-SUBTRANS PIC 999.
05 RFTR-ATTR PIC 9(6).
05 RFTR-SIZE PIC 999.
05 RFTR-IS-PTR PIC 99.
05 RFTR-TYPE PIC X.
05 RFTR-ND PIC 99.

3.2.5.5.2 RFT SWITCHING

Due to the possibility of having both local and remote
subtransactions, RFT-SUBTRANS(1) is checked to see if it is equal
to JQG-SUBRANSL-WS(l). If it is not equal, the RFT and RFT2
tables need to be switched since they do not correspond to their
matching subtransactions.

3.2.5.5.3 NAMFIL

Call the File I/O Primitive NAMFIL to retrieve a file
name for the results file and the two temporary files that will be
used in the sort function.

3.2.5.5.4 FIND KEY ATTRIBUTES

Find the key attributes for each file and move the
attribute description to the input file table SORT-FILE1 and
SORT-FILE2. The key attributes are found in the APL table and
then compared to the RFT table to determine the attribute
description. The JQG-ATTRL is compared to the RFT-ATTR until a
match is found. This is repeated for the second input file with
JQG-ATTRR compared to RFT2-ATTR.

3-29

DS 620341320
30 September 1990

3.2.5.5.5 SORT THE INPUT FILES

The two input files must be sorted in key order to
facilitate any comparisons. The sort is performed by a File I/O
Primitive. The routine is called and passed the input file names,
the temporary file names that will receive the result of the sort,
and the descriptions of each file key fields.

3.2.5.5.6 OPEN AND READ FILES

Open input and result files. Read the fist record from
both input files into buffers of maximum record length of 2025
characters. Open and read are performed by File I/O Primitives.

3.2.5.5.7 SET MULTIPLE KEY CONDITIONS

Set up multiple key conditions based on r.mber of
APL-USED. Every key for each record will be compared based on the
operator for each APL entry.

3.2.5.5.8 CREATE ATTRIBUTE BUFFERS

Read the sorted attribute descriptions from the RFT
into input field descriptions for files 1 and 2. The left side
buffer is for file 1 and the right side buffer is for file 2.

Set up the null conditions check. If either record key
field is a null value, the two key fields cannot be compared and
the records cannot match. The null flags are indicated in each
input file record buffer. Each record buffer is in the following
format:

01 FILEx-BUFFER.
03 FILEx-REC-BUFFER PIC X(2025).
03 NULL-FILEx-BUFFER REDEFINES FILEx-REC-BUFFER

PIC X OCCURS 2025 TIMES
INDEXED BY NLFx-INDX.

where x is either 1 or 2.

To determine the position of a field in the buffer for
comparison, use an offset of RFT-USED + 1 as the record starting
position.

The null buffer flag will indicate "0" for not NULL and
"I" for Null.

If a Filel record key field is null:
Write results
Read Filel

If a File2 record key field is null:
Read File2
IF EOF (File2)

3-30

DS 620341320
30 September 1990

Repeat until EOF (Filel):
Write results
Read Filel.

3.2.5.5.9 CHECK FIELD CHARACTER TYPES

The only allowable type comparisons are character to
character, numeric to numeric or sined, or signed to signed or
numeric. Stop processing if there is a character type in one
file and a non-character type in the other and display an error
message.

3.2.5.5.10 CONVERSION AND COMPARISON OF FIELDS

The compare and conversion routines are called by the NIS
Subroutine. They are Fortran routines that convert the buffers
to a standard data type, compare the values and set the NIS
condition. If the field buffer character type is numeric or
signed, the buffer must be converted to a real number for
comparison. Signed overpunched numbers are converted to
positive or negative digits by a Fortran routine according to
the VAX conversion chart. These routines are VAX dependent.

After all conversion is completed, the two fields are
compared to the comparison condition. This condition is the
output of the comparison routine.

Condition 1 - Left side is less than right
side.

Condition 2 - Left side is equal to right
side.

Condition 3 - Left side is greater than right
side.

Condition 4 - Left side is equal to right side
and left side is equal to
previous left side.

3.2.5.5.11 NIS PROCESSING

NIS CONDITION OF 1

Write results
Read Filel

NIS CONDITION OF 2

IF more than 1 key and all keys not yet read
increment key index

ELSE
Read Filel.

NIS CONDITION OF 3

IF EOF (File2)
Repeat until EOF (Filel):

3-31

DS 620341320
30 September 1990

Write results
Read Filel

ELSE
Read File2

IF EOF (File2)
Repeat until EOF (Filel):

Write results
Read Filel.

NIS CONDITION OF 4

IF more than 1 key and all keys not yet read
increment key index

ELSE
Read Filel.

3.2.5.5.12 CREATE THE RESULTS FILE

The results file consists of filel records meeting the NIS
criteria. The null flags for the filel fields are written to
the record as well.

3.2.5.5.13 NIS PROCESSING LOGIC

The NIS Subroutine will stop processing after all records
in filel have been read and compared. The open files are all
closed, the temporary input files are deleted and the name of
the results file, number of results records, and the program
status are passed back to the calling routine.

3.2.5.6 OUTPUT

The NIS Aggregator will return the results file name, the
results record count, and the program status to the calling
routine.

3.2.5.7 ERROR HANDLING

The NIS Aggregator uses the standard CDMP error handling
procedures. In addition, each module called will have an error
message/code to identify the error and indicate where the error
occurred.

3.3 Special Requirements

Principles of structured design and programming will be
adhered to.

3.4 Human Performance

Not applicable.

3.5 Database Requirements

Not applicable.

3-32

DS 620341320
30 September 1990

3.6 Adaptation Requirements

The system will be implemented at the ICAM IISS Test Bed
site located at the Arizona State University facility in Tempe,
AZ. The Aggregator processes will be implemented on the VAX VMS
host and the IBM host. The VAX and IBM versions will be the
same except for the implementation of the system sort.

3-33

DS 620341320
30 September 1990

SECTION 4

QUALITY ASSURANCE PROVISION

In preparation for describing requirements for quality
assurance provisions, it is appropriate to define the terms
"test" and "debug" which are often used interchangeably.
"Testing" is a systematic process that may be preplanned and
explicitly scheduled. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. "Debugging" is the process of isolation and
correction of the cause of an error. To start with, the concept
of "antibugging" is recommended in the construction of the
software modules. In his text on software development
(Techniques of Program Structure and Design, Prentice-Hall,
1975) Yourdon defines antibugging as "the philosophy of writing
programs in such a way as to make bugs less likely to occur, and
when they do occur (which is inevitable), to make them more
noticeable to the programmer and the user." That is, do as much
error checking as is practical and possible in each routine.

Among the tests that should be incorporated into all
software are:

1. input data checks

2. interface data checks, i.e., tests to determine
validity of data passed from calling routine

3. database verification

4. operator command checks

5. output data checks

Not all tests are required in all routines, but error
checking is an essential part of all software.

The CI quality assurance provisions must consist of three
levels of test, validation and qualification of the constructed
application software.

1. The initial level can consist of the normal testing
techniques that are accomplished during the con-
struction process. They consist of design and
code walk-throughs, unit testing, and integration
testing. These tests will be performed by the design
team which will be organized in a manner similar to
that discussed by Weinberg in his text on software
development team organization (The Psychology of
Computer Programming New York: Van Nostrand
Reinhold, 1971). Essentially a team is assigned to
work on a subsystem or CI. This approach has been
referred to as "adaptive teams" and "egoless teams."
Members of the team are involved in the overall

4-1

DS 620341320
30 September 1990

design of the subsystem; there is better control and
members are exposed to each others' design. The
specific advantage from a quality assurance point is
the formalized critique of design walk-throughs which
are a preventive measure for design errors and pro-
gram "bugs." Structured design, design walk-throughs
and the incorporation of "antibugging" facilitate
this level of testing by exposing and addressing
problem areas before they become coded "bugs."

2. Preliminary qualification tests of the CI are
performed to highlight the special functions of the
CI from an integrated point of view. Certain
functional requirements may require the cooperative
execution of one or more modules to achieve an
intermediate or special function of the CI. Specific
test plans will be provided for the validation of
this type of functional requirement including
preparation of appropriate test data. (Selected
functions from 3.2 must be listed).

3. Formal Qualification Test will verify the functional
performance of all the modules, within Lhe CI as an
integrated unit, that accept the specified input,
perform the specified processes and deliver the
specified outputs. Special consideration must be
given to test data to ensure verification that proper
interface of modules has been constructed.

4-2

DS 620341320
30 September 1990

SECTION 5

PREPARATION FOR DELIVERY

The implementation site for the constructed software will
be the ICAM Integrated Support System (IISS) Test Bed site
located at Arizona State University in Tempe, AZ. The required
computer equipment will have been installed. The constructed
software will be transferred to the IISS system via appropriate
storage media.

*U.S. GOVERNMENT PRINTING OMCE: I"Z - 648-127/63

5-1

